Essential role of myosin light chain kinase in the mechanism for MgATP-dependent priming of exocytosis in adrenal chromaffin cells.

نویسندگان

  • K Kumakura
  • K Sasaki
  • T Sakurai
  • M Ohara-Imaizumi
  • H Misonou
  • S Nakamura
  • Y Matsuda
  • Y Nonomura
چکیده

Ca(2+)-induced exocytosis in chromaffin cells now seems to consist of at least two distinct steps:MgATP-dependent Ca(2+)-dependent priming of the secretory apparatus, and Ca(2+)-dependent MgATP-independent step that triggers exocytosis (Bittner and Holz, 1992). Recently we found that a specific inhibitor of myosin light chain kinase (MLCK), wortmannin, inhibits Ca(2+)-induced catecholamine release from digitonin-permeabilized chromaffin cells, suggesting an implication of MLCK in the mechanisms of Ca(2+)-induced exocytosis (Imaizumi et al., 1992b). To elucidate further the implication of MLCK in the mechanism of exocytosis, we studied the effects of wortmannin and a peptide inhibitor (SM-1) corresponding to the pseudosubstrate domain of MLCK on MgATP-dependent and MgATP-independent release in digitonin-permeabilized chromaffin cells. Ca(2+)-induced exocytosis from the permeabilized cells in the presence of MgATP was inhibited by both SM-1 and wortmannin. Inhibitory effect of wortmannin on the rate of release induced by 10 microM Ca2+ in the presence of MgATP was much prominent in the later phase (1-10 min), although the initial rate was also decreased. SM-1 strongly inhibited ATP-dependent release without affecting Ca(2+)-dependent ATP-independent release at all. In addition, priming effect of MgATP that underlies Ca(2+)-dependent ATP-independent release was remarkably reduced by both wortmannin and SM-1. These results suggest that MLCK plays an essential role in ATP-dependent priming of Ca(2+)-induced exocytosis in chromaffin cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myosin II activation and actin reorganization regulate the mode of quantal exocytosis in mouse adrenal chromaffin cells.

Chromaffin cells of the adrenal medulla are innervated by the sympathetic nervous system. Stimulation causes chromaffin cells to fire action potentials, leading to the exocytosis of various classes of transmitters into the circulation. Low-frequency electrical stimulation (action potentials delivered at 0.5 Hz) causes adrenal chromaffin cells to selectively release catecholamines through a kiss...

متن کامل

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

Distinct effects of alpha-SNAP, 14-3-3 proteins, and calmodulin on priming and triggering of regulated exocytosis

We have used stage-specific assays for MgATP-dependent priming and for Ca(2+)-activated triggering in the absence of free MgATP to examine the effects of alpha-SNAP, 14-3-3 proteins and calmodulin on regulated exocytosis in permeabilized adrenal chromaffin cells. All three proteins lead to a Ca(2+)-dependent increase in catecholamine secretion. Both alpha-SNAP and 14-3-3 proteins stimulated in ...

متن کامل

Synaptobrevin cleavage by the tetanus toxin light chain is linked to the inhibition of exocytosis in chromaffin cells.

Exocytosis of secretory granules by adrenal chromaffin cells is blocked by the tetanus toxin light chain in a zinc specific manner. Here we show that cellular synaptobrevin is almost completely degraded by the tetanus toxin light chain within 15 min. We used highly purified adrenal secretory granules to show that synaptobrevin, which can be cleaved by the tetanus toxin light chain, is localized...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 14 12  شماره 

صفحات  -

تاریخ انتشار 1994